

 Navigation

 	
 index

 	
 next |

 	gs.email 2.2.0 documentation

gs.email Documentation

This is the core product for sending email from GroupServer [http://groupserver.org/]
via SMTP [1]. It is used by the groups to send email to
the group members [2], and the user-profile system to
send notifications [3].

Contents:

	Configuration
	Options

	Examples

	Troubleshooting

	gs.email API Reference
	send_email

	Mailer

	Configuration

	Changelog
	2.2.0 (2015-03-17)

	2.1.2 (2014-10-24)

	2.1.1 (2014-03-21)

	2.1.0 (2014-01-24)

	2.0.1 (2012-07-28)

	2.0.0 (2012-07-19)

Resources

	Code repository: https://github.com/groupserver/gs.email/

	Documentation:
http://groupserver.readthedocs.io/projects/gsemail/

	Questions and comments to
http://groupserver.org/groups/development/

	Report bugs at https://redmine.iopen.net/projects/groupserver/

Indices and tables

	Index

	Module Index

	Search Page

	[1]	Receiving email is supported by the
gs.group.messages.add.base product
<https://github.com/groupserver/gs.group.messages.add.base>

	[2]	Sending email from groups is handled by the
gs.group.list.sender product
<https://github.com/groupserver/gs.group.list.sender>

	[3]	Notifications are sent by the
gs.profile.notify product
<https://github.com/groupserver/gs.profile.notify/>

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gs.email 2.2.0 documentation

Configuration

The configuration for sending email is controlled by the
gsconfig.ini file. The configuration options set up how the
system connects to the SMTP server [1]. Delivery of email
messages can be can be to a local server, a remote server, or
turned off entirely as shown in the configuration examples
below.

Options

	hostname (required):

	The name of the SMTP server (localhost if the SMTP server
is running on the same machine as GroupServer).

	port (required):

	The port that the SMTP server runs on (usually 25).

	username (optional):

	The name of the user that logs into the SMTP server to send the
message. (Defaults to None.)

	password (optional):

	The password used to log into the SMTP server. (Defaults to
None.)

	no_tls and force_tls (both optional):

	Transport Layer Security (TLS) is the replacement to the Secure
Sockets Layer (SSL). It can be used to encrypt the
communication between GroupServer and the SMTP server. Normally
the system will use TLS if it is available.

Setting the no_tls option to False will force the
GroupServer to connect to the SMTP server en clear, even if
encryption is available. This may be useful if the SMTP server
only accepts connections from localhost and it is running
on the same machine as GroupServer.

Setting the force_tls to True forces GroupServer to use
encryption to connect to the SMTP server. If TLS is not
available then a RuntimeError is raised.

	queuepath (optional):

	The path to the Maildir folder that stores all the messages
before processing by the SMTP server. Defaults to
/tmp/mailqueue.

	processorthread (optional):

	If True (the default) then a separate thread will be
started to handle the queue and pass the email messages on to
the SMTP server. If False the email messages will just be
written to the file in queuepath and not be processed
(which is very useful for testing).

	xverp (optional):

	If True then XVERP will be used when the email messages are
sent [2].

Examples

Setting up delivery to the local SMTP server, from the
GroupServer instance called main:

[config-main]
smtp = local

[smtp-local]
hostname = localhost
port = 25
no_tls = True
queuepath = /tmp/main-mail-queue
xverp = True

	Note:	There will be more than the smtp option for the
configuration of the main GroupServer
instance. However, the other options have been left out
for clarity.

Setting up delivery to a remote SMTP server, from the GroupServer
instance called production:

[config-production]
smtp = remote

[smtp-remote]
hostname = remote.host.name
port = 2525
username = user_on_the_remote_server
password = password_on_the_remote_server
force_tls = True
queuepath = /tmp/production-mail-queue
processorthread = True
xverp = True

Setting up a test system to not send out email:

[config-test]
smtp = none

[smtp-none]
hostname = localhost
port = 25
queuepath = /tmp/test-mail-queue
processorthread = False

	[1]	Configuration is handled by the gs.email.config
module. It uses the gs.config module to read
the configuration information
<https://github.com/groupserver/gs.config>

	[2]	For more information about XVERP see The Postfix
VERP Howto [http://www.postfix.org/VERP_README.html].

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gs.email 2.2.0 documentation

Troubleshooting

If mail is trapped in queuedir/new look to see if
.sending_* or .rejected_* files have been created in the
same directory. If so, delete them and the mail should be
processed.

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gs.email 2.2.0 documentation

gs.email API Reference

The main function used by external code in the send_email()
function. Internally it uses the mailer to send messages based
on the configuration.

send_email

	
gs.email.send_email(sender, recipients, email)[source]

	Send an email message to some recipients

	Parameters:	
	sender (str [http://docs.python.org/library/functions.html#str]) – The address of the person, or group, that is
responsible for sending the email message. This will
become the from-address on the envelope; it is
separate from the From,
Sender, and Reply-to
addresses in the email message.

	recipients (str, tuple, list) – The address of the person who should receive the email
message, a list of recipients, or a tuple
containing the addresses of the recipients. This will
become the to-address on the envelope; it is separate
from the To, CC, and BCC addresses in the email message.

	email (str [http://docs.python.org/library/functions.html#str]) – The email message, as a string. It needs to be a complete
message with headers and a body.

	Returns:	None.

The send_email() function uses SMTP to send an email message
to the recipients, from the sender, in batches of
gs.email.core.MAX_BATCH recipients. The batching is necessary to
prevent overwhelming the SMTP server (it makes management of the mail queue
easier).

	
gs.email.core.MAX_BATCH = 50

	The maximum number of email recipients in a batch.

Examples

Send an email from the support-address of the site to all the
addresses of a GroupServer user:

eu = gs.profile.email.base.EmailUser(context, userInfo)
send_email(siteInfo.get_support_email(), eu.get_addresses(), emailMessage)

The gs.profile.notify.NotifyUser class demonstrates how
to send an email message using send_email(). The
gs.profile.notify.MessageSender class demonstrates how
an email message is constructed using the standard Python
email [http://docs.python.org/library/email.html#module-email] module.

Mailer

The gs.email.mailer.XVERPSMTPMailer is loaded when the
configuration option xverp is set to True (see
Configuration). As its name implies, it turns on XVERP, so
the groups can be informed when an address bounces [1]. For
the most part the mailer is the same as that provided by
zope.sendmail [https://pypi.python.org/pypi/zope.sendmail].

	
class gs.email.mailer.XVERPSMTPMailer(hostname='localhost', port=25, username=None, password=None, no_tls=False, force_tls=False)[source]

	Sending messages to an SMTP server using TLS and XVERP

	
send(fromaddr, toaddrs, message)[source]

	Send a message

	Parameters:	
	fromaddr (str [http://docs.python.org/library/functions.html#str]) – The envelope-from.

	toaddrs (list [http://docs.python.org/library/functions.html#list]) – The envelope-to addresses.

	message (str [http://docs.python.org/library/functions.html#str]) – The email message to send.

	Returns:	None

send() will send a message to the SMTP server, requesting that XVERP
is used. This is effectively the same as the
zope.sendmail.mailer.SMTPMailer.send() method, except
mail_options is used to pass XVERP to the SMTP server. TLS is used
where possible.

Configuration

The gs.email.config.create_emailUtilities() function loads
the configuration used to connect to the outgoing SMTP server,
before loading an appropriate mailer.

	
gs.email.config.create_emailUtilities(instance_id=None)[source]

	Create the utilities to send the email messages

	Parameters:	instance_id (str [http://docs.python.org/library/functions.html#str]) – The indentifier for the GroupServer instance

	Returns:	None

The create_emailUtilities() function loads the smtp section of the
configuration of the instance specified by instance_id. If no instance
is specified then gs.config.getInstanceId() is used to determine the
current instance. It then loads the following configuration options:

	hostname

	port

	username

	password

	no_tls

	force_tls

	queuepath

	processorthread

	xverp

If the XVERP option is True then
gs.email.mailer.XVERPSMTPMailer is registered as the utility used
to connect to the SMTP host; otherwise
zope.sendmail.mailer.SMTPMailer is used. In either case the mailer
is configured with the options in the config file.

	[1]	For more information about XVERP see The Postfix
VERP Howto <http://www.postfix.org/VERP_README.html>

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	gs.email 2.2.0 documentation

Changelog

2.2.0 (2015-03-17)

	Turning on lax-parsing of the config, to avoid issues with the
presence (or absence) of the relay-address-prefix

2.1.2 (2014-10-24)

	Using GitHub [https://github.com/groupserver/gs.email] as the canonical repository

	Naming the reStructuredText files as such

2.1.1 (2014-03-21)

	Adding a try-except block

2.1.0 (2014-01-24)

	Cleaning up the imports

	Cleaning up the code to make it PEP 8 [https://www.python.org/dev/peps/pep-0008] compliant

2.0.1 (2012-07-28)

	Fixing a typing mistake

2.0.0 (2012-07-19)

Initial version. Prior to this sending email was carried out by
some code in the ZMI.

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	gs.email 2.2.0 documentation

Index

 C
 | M
 | P
 | S
 | X

C

 	

 	create_emailUtilities() (in module gs.email.config)

M

 	

 	MAX_BATCH (in module gs.email.core)

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 8

S

 	

 	send() (gs.email.mailer.XVERPSMTPMailer method)

 	

 	send_email() (in module gs.email)

X

 	

 	XVERPSMTPMailer (class in gs.email.mailer)

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

_modules/index.html

 Navigation

 		
 index

 		gs.email 2.2.0 documentation »

 All modules for which code is available

		gs.email.config

		gs.email.core

		gs.email.mailer

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

_modules/gs/email/mailer.html

 Navigation

 		
 index

 		gs.email 2.2.0 documentation »

 		Module code »

 Source code for gs.email.mailer

-*- coding: utf-8 -*-
##
#
Copyright © 2014 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import
import socket
from zope.sendmail.mailer import SMTPMailer, have_ssl

[docs]class XVERPSMTPMailer(SMTPMailer):
 '''Sending messages to an SMTP server using TLS and XVERP'''
[docs] def send(self, fromaddr, toaddrs, message):
 """Send a message

:param str fromaddr: The envelope-from.
:param list toaddrs: The envelope-to addresses.
:param str message: The email message to send.
:returns: ``None``

:meth:`send` will send a message to the SMTP server, requesting that XVERP
is used. This is effectively the same as the
:meth:`zope.sendmail.mailer.SMTPMailer.send` method, except
``mail_options`` is used to pass ``XVERP`` to the SMTP server. TLS is used
where possible.
"""
 connection = self.smtp(self.hostname, str(self.port))

 # send EHLO
 code, response = connection.ehlo()
 if code < 200 or code >= 300:
 code, response = connection.helo()
 if code < 200 or code >= 300:
 m = 'Error sending HELO to the SMTP server '\
 '(code=%s, response=%s)' % (code, response)
 raise RuntimeError(m)

 # encryption support
 have_tls = connection.has_extn('starttls')
 if not have_tls and self.force_tls:
 raise RuntimeError('TLS is not available but TLS is required')

 if have_tls and have_ssl and not self.no_tls:
 connection.starttls()
 connection.ehlo()

 if connection.does_esmtp:
 if self.username is not None and self.password is not None:
 username, password = self.username, self.password
 if isinstance(username, unicode):
 username = username.encode('utf-8')
 if isinstance(password, unicode):
 password = password.encode('utf-8')
 connection.login(username, password)
 elif self.username:
 m = 'Mailhost does not support ESMTP but a username is '\
 'configured'
 raise RuntimeError(m)

 connection.sendmail(fromaddr, toaddrs, message,
 mail_options=["XVERP"])
 try:
 connection.quit()
 except socket.sslerror:
 #something weird happened while quiting
 connection.close()

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

_modules/gs/email/config.html

 Navigation

 		
 index

 		gs.email 2.2.0 documentation »

 		Module code »

 Source code for gs.email.config

-*- coding: utf-8 -*-
##
#
Copyright © 2014, 2015 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import
from zope.component import getUtility, queryUtility
from zope.component import getGlobalSiteManager
from zope.sendmail.interfaces import IMailer, IMailDelivery
from zope.sendmail.mailer import SMTPMailer
from zope.sendmail.delivery import QueuedMailDelivery
from zope.sendmail.queue import QueueProcessorThread
from gs.config import Config, getInstanceId
from gs.config.config import bool_
from .mailer import XVERPSMTPMailer

import logging
log = logging.getLogger('gs.email')

[docs]def create_emailUtilities(instance_id=None):
 '''Create the utilities to send the email messages

:param str instance_id: The indentifier for the GroupServer instance
:returns: ``None``

The :func:`create_emailUtilities` function loads the ``smtp`` section of the
configuration of the instance specified by ``instance_id``. If no instance
is specified then :func:`gs.config.getInstanceId` is used to determine the
current instance. It then loads the following configuration options:

* ``hostname``
* ``port``
* ``username``
* ``password``
* ``no_tls``
* ``force_tls``
* ``queuepath``
* ``processorthread``
* ``xverp``

If the XVERP option is ``True`` then
:class:`gs.email.mailer.XVERPSMTPMailer` is registered as the utility used
to connect to the SMTP host; otherwise
:class:`zope.sendmail.mailer.SMTPMailer` is used. In either case the mailer
is configured with the options in the config file.'''
 if not instance_id:
 instance_id = getInstanceId()

 config = Config(instance_id)
 config.set_schema('smtp', {'hostname': str, 'port': int,
 'username': str, 'password': str,
 'no_tls': bool_, 'force_tls': bool_,
 'queuepath': str, 'processorthread': bool_,
 'xverp': bool_})
 smtpconfig = config.get('smtp', strict=False)
 name = ''
 for key in ('hostname', 'port', 'username', 'password', 'no_tls',
 'force_tls'):
 name += '+%s+' % smtpconfig.get(key, None)

 gsm = getGlobalSiteManager()
 if not queryUtility(IMailer, 'gs.mailer.%s' % name):
 if smtpconfig.get('xverp', False):
 Mailer = XVERPSMTPMailer
 else:
 Mailer = SMTPMailer

 gsm.registerUtility(
 Mailer(
 hostname=smtpconfig.get('hostname', None),
 port=smtpconfig.get('port', None),
 username=smtpconfig.get('username', None),
 password=smtpconfig.get('password', None),
 no_tls=smtpconfig.get('no_tls', None),
 force_tls=smtpconfig.get('force_tls', None)),
 IMailer, name='gs.mailer.%s' % name)
 queuePath = smtpconfig.get('queuepath', '/tmp/mailqueue')
 if not queryUtility(IMailDelivery, name='gs.maildelivery'):
 delivery = QueuedMailDelivery(queuePath)
 gsm.registerUtility(delivery, IMailDelivery, name='gs.maildelivery')
 if smtpconfig.get('processorthread', True):
 mailerObject = getUtility(IMailer, 'gs.mailer.%s' % name)
 thread = QueueProcessorThread()
 thread.setMailer(mailerObject)
 thread.setQueuePath(queuePath)
 thread.start()

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

_modules/gs/email/core.html

 Navigation

 		
 index

 		gs.email 2.2.0 documentation »

 		Module code »

 Source code for gs.email.core

-*- coding: utf-8 -*-
##
#
Copyright © 2014 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import
from logging import getLogger
log = getLogger('gs.email')
from zope.sendmail.interfaces import IMailDelivery
from zope.component import getUtility
from .config import create_emailUtilities
FIXME: config
#: The maximum number of email recipients in a batch.
MAX_BATCH = 50

[docs]def send_email(sender, recipients, email):
 '''Send an email message to some recipients

:param str sender: The address of the person, or group, that is
 responsible for sending the email message. This will
 become the from-address on the *envelope;* it is
 separate from the :mailheader:`From`,
 :mailheader:`Sender`, and :mailheader:`Reply-to`
 addresses in the email message.
:param recipients: The address of the person who should receive the email
 message, a ``list`` of recipients, or a ``tuple``
 containing the addresses of the recipients. This will
 become the to-address on the *envelope;* it is separate
 from the To, CC, and BCC addresses in the email message.
:type recipients: str, tuple, list
:param str email: The email message, as a string. It needs to be a complete
 message with headers and a body.
:returns: ``None``.

The :func:`send_email` function uses SMTP to send an ``email`` message
to the ``recipients``, from the ``sender``, in *batches* of
:data:`gs.email.core.MAX_BATCH` recipients. The batching is necessary to
prevent overwhelming the SMTP server (it makes management of the mail queue
easier).'''
 if not (isinstance(recipients, list) or isinstance(recipients, tuple)):
 recipients = [recipients]
 # TODO: sort
 # --=mpj17-- Consider the wisdom of sorting the list of recipients
 # recipients.sort(key=lambda x: x[::-1])
 # This will put all the addresses to the same *host* closer together.
 create_emailUtilities()
 mailer = getUtility(IMailDelivery, 'gs.maildelivery')

 while recipients:
 if (MAX_BATCH == 0) or (MAX_BATCH > len(recipients)):
 batch = len(recipients)
 else:
 batch = MAX_BATCH

 try:
 mailer.send(sender, recipients[0:batch], email)
 except TypeError as te:
 m = 'Issue sending email of length {0} from {3} to {1}:\n{2}'
 msg = m.format(len(email), recipients[0:batch], te, sender)
 log.error(msg)
 else:
 m = "Sent email of length {0} from {3} to {1} (batchsize: {2})"
 msg = m.format(len(email), recipients[0:batch], batch, sender)
 log.info(msg)

 recipients = recipients[batch:]

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

